home *** CD-ROM | disk | FTP | other *** search
- >3.Simple inequality. (Asking for hints)
- x-3(1-x)<2x
- MYSZEK 2xy
- EXAMPLE
- e
- t101
- p30
- t0
-
- t1
- p5
- t0
- zr
- t4
- p8
- t0
- v500
- zrm
- kC
- t6
- p3
- t0
- cxm
- k-m
- c3m
- n(m
- c1m
- k-m
- cxm
- n)m
- k<m
- c2m
- cxm
- t8
- OT10
- t0
- ke
- t10
- p3
- t0
- kem
- p10
- oxm
-
- k?
- t12
- p30
- t0
-
- kS
- t14
- p5
- t0
- sl
- slm3
- k?
- t16
- p6
- t0
- k?m
- oe
- p15
- oem
- oe
- p15
- oem
- ox
- p10
- oxm
- t18
- p8
- t0
- kS
- spm
- kx
- kxm
- sh
- shm
- kx
- kxm
- sp
- spm
- sp
- spm
- k?
- t20
- p6
- t0
- k?m
- ox
- p10
- oxm
- sp
- spm
- kx
- kxm
- c3
- c3m
- sp
- spm
- c3
- c3m
- sl
- slm4
- kb
- kbm
- ke
- t22
- p10
- t0
- kem
- p10
- oxm
-
- k?
- t24
- p4
- t0
- k?m
- ox
- p10
- oxm
- kx
- t26
- p5
- t0
- kxm
- sp
- spm
- kx
- kxm
- k+
- k+m
- sp
- spm2
- kx
- kxm
- ke
- t28
- p5
- t0
- kem
- p10
- oxm
-
- se
- t30
- p6
- t0
- sem
- k+
- k+m
- c3
- c3m
- sh
- shm
- ss
- t32
- p8
- t0
- ssm
- spm3
- ssm
- kx
- kxm
- sp
- t34
- p6
- t0
- spm
- sp
- spm
- k-
- k-m
- cx
- cxm
- sp
- spm
- kx
- kxm
- kx
- kxm
- shm
- t36
- p8
- t0
- ssm
- sp
- spm
- sp
- spm
- sp
- spm
- ssm
- c2
- c2m
- ke
- t28
- p5
- t0
- kem
- p10
- oxm
-
- cx
- t40
- p6
- t0
- cxm
- k<m
-
- c1m
- k/
- k/m
- sg
- sgm
- c1
- c1m
- sd
- sdm
- c2
- c2m
- ke
- t43
- p5
- t0
- kem
- p10
- oxm
-
- ke
- t42
- p5
- t0
- kem
- p10
- oxm
- t44
- p8
- t0
- sUm
- p1
- sUm
- p1
- sUm
- p1
- sUm
- p1
-
- ze
- t102
- p15
- t0
- zxm
- zem
- e
-
- q
-
- BLURB
- 1`#We are going to solve`the simple inequality:
- 1`#"$x-3(1-x)<2x"$
- 4`#To open the &Equations& window
- 4`#we click on the on-screen icon.
- 4`#The mouse is pointing at the icon.
- 6`We write the problem in the window.
- 8`#It is very useful to read the texts
- 8`#which appear below the title of the window.
- 10`After formulating the problem we press &"ENTER"&.
- 12`If necessary we can &ask the program for a &hint&.
- 12`To do that we place the cursor at
- 12` an inequality or equality sign,
- 12` a bracket,
- 12` a fraction,
- 12` a root,
- 12` an absolute value sign,
- 12` a number with a power,
- 12` a variable with a power,
- 12` "$+"$,"$-"$,"$*"$,"$:"$ sign
- 12`and press the &space bar& or click the &right& mouse button.
- 14`#Using the &left& arrow we place
- 14`#the cursor at the inequality sign ...
- 16`and ask the program for a hint.
- 18`#Following the program's advice, we reduce
- 18`#similar terms between the sides of the inequality.
- 18`#We transfer "$x"$ to the right-hand side of the
- 18`#inequality and perform the subtraction
- 18`#"$2x-x=x"$.
- 20`We place the cursor at the bracket
- 20`#and ask for a hint again.
- 22`#Having transformed the expression
- 22`#we press &"ENTER"& again.
- 22`#It is better to check the solution often
- 22`#because then if we make a mistake
- 22`#it is easier to find it.
- 24`We ask the program for a hint again.
- 26`We follow the program's advice.
- 28`We press &"ENTER"& again.
- 30`#We transfer the number "$-3"$ to
- 30`#the right-hand side of the inequality.
- 30`#We have to change the sign of the number.
- 32`#To remove "$-3+"$ we mark the block
- 32`#(&SHIFT&+&right& arrow).
- 32`#and press &Delete&.
- 34`#We transfer the variable "$x"$ to the left-hand side of
- 34`#the inequality. We have to change the sign of "$x"$.
- 36`We reduce similar terms:
- 36`#"$3x-x=2x"$.
- 36`#To replace $"3x-$" by $"2$" we mark the block
- 36`#(&SHIFT&+&right& arrow) and press the &$"2$"& key.
- 40`We write @x<1/Ø1±≤2±@.
- 42`#This result can be accepted as the final answer.
- 42`#We press "&ENTER&"
- 42`#&without making any changes& in the expression.
- ;42`#We press the &"Answer"& button.
- 44`By clicking on the tabs we can look through all the steps.
- 43`#We press "&ENTER&".
-
- 101`#We show how to use 2xy.
- 101``#"The presentation proceeds automatically."
- 101``#To move yellow panels use the mouse.
- 101`#Press ENTER on the KEYBOARD to continue.
-
- 102`#In a moment the &Examples& window will appear.
- 102`You can watch the same presentation again, or
- 102`#load the next example, or
- 102`#close the window and solve your own problem.
-
-